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Abstract

This study analyzes the in-plane free vibration of a rotating curved beam with an elastically restrained root. Neglecting

the effects of shear deformation and the Coriolis force, governing differential equations are derived for the coupled

bending–extensional vibration of the curved beam using Hamilton’s principle and a consistent linearization approach.

Explicit relations are constructed to describe the correlation between the axial and radial displacements of the beam. These

relations are then used to transform the coupled governing differential equations into a sixth-order ordinary differential

equation expressed in terms of the radial displacement variable only. An exact closed-form fundamental solution of the

transformed system is then derived. Finally, the respective effects of the arc angle, the rotational speed, the hub radius and

the root spring constants on the natural frequencies and divergent instability characteristics of a curved rotating beam are

systematically examined and compared with those observed for a straight cantilever beam.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating components are used in a wide variety of engineering applications, including vehicular propulsion
systems, flexible rotating space booms, turbomachinery, automotive cooling systems, and so on. The dynamic
behavior of such components is highly complex, and thus they are generally modeled in the form of a simple
rotating beam. An excellent review of the vibrational characteristics of typical rotating components can be
found in the studies presented by Leissa [1], Ramamurti and Balasubramanian [2], Rao [3], and Lin et al. [4].

Many researchers have employed approximation methods of various types to investigate the effects of the
rotational speed, setting angle, material properties, pre-twist amount, shear deformation and rotary inertia on
the bending vibrations of a straight rotating beam. For example, Ko [5] utilized the finite-difference technique
to investigate the flexural behavior of tapered sandwich rotating beams, while Tomar [6] analyzed the effects
of thermal gradients on the vibrational frequency of pretwisted rotating beams using the Rayleigh method.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nagaraj and Shanthakumar [7] used the Galerkin finite element method to analyze rotor blade vibrations.
Hodges and Rutkowski [8] analyzed the free vibrations of a rotating beam using a variable-order finite element
method. Young and Lin [9] used a stochastic averaging technique to investigate the stability of rotating
tapered pretwisted beams with randomly varying speeds. Hashemi et al. [10] proposed a new dynamic finite
element method based on trigonometric shape functions for analyzing the vibrations of spinning beams.
Banerjee [11] applied the dynamic stiffness method to analyze the free vibration of uniform and tapered
straight beams.

In addition to the approximation methods described above, several researchers have also obtained exact
solutions for the bending vibrations of rotating beams. For example, Storti and Aboelnaga [12] derived the
exact solution for the bending vibrations of a class of rotating non-uniform beams with hyper-geometric
solutions. Lee and Kuo [13,14] utilized a polynomial expansion technique to obtain the exact solution for the
bending vibration of an elastically restrained rotating non-uniform beam. Lee and Lin [15] employed a
numerical method to investigate the coupled effect of the rotational speed and the mass moment of inertia on
the natural frequencies of a rotating non-uniform Timoshenko beam. Lin et al. [16] derived a semi-analytical
steady-state solution for rotating beams with an elastically restrained root and investigated the effects of
viscous damping on the natural frequency of the beam.

All of the studies reviewed above considered the beam to be perfectly straight. However, in practice, the
performance of a fan is generally enhanced by curving the profile of the beams in either the forward or
rearward direction [17]. Reviewing the literature, however, very little mention is found of the vibration
characteristics of such beams due to the resulting complexity of the rotating system. Of those researchers
which have investigated this problem, Wang and Mahrenholtz [18] used the Galerkin approximation method
and the Legendre polynomial approach to investigate the effects of the hub radius, the cross-section
orientation and the radius of curvature on the dynamic response of the rotating beam at various rotational
speeds. However, the effect of the root stiffness was not considered. Park and Kim [19] conducted a dynamic
analysis of a rotating curved beam with a tip mass using the finite element method. For simplicity, however,
the effects of both the root stiffness and the hub radius were ignored.

In practice, the root stiffness of a rotating curved beam has a significant effect on its dynamic response and
should therefore be taken into account. Accordingly, the current study applies Euler–Bernoulli beam theory
and Hamilton’s principle to derive two governing differential equations for the vibration of a rotating curved
beam with an elastically restrained root in which both the root stiffness and the hub radius are taken into
account. Explicit relations are constructed to correlate the radial and axial displacements of the beam and a
closed-form solution of the rotating curved beam is then derived. Finally, the respective effects of the
rotational speed, the arc angle, the hub radius and the root stiffness on the natural frequencies and divergent
instability of the beam are systematically explored.
2. Derivation of motion equations

Consider a rotating curved beam with an elastically restrained root mounted in a hub with a radius of rh and
rotating with a constant angular speed O, as shown in Fig. 1. In accordance with Euler–Bernoulli theory, the
radial cross-section of the beam is assumed to retain a planar form following its bending and axial
deformation. Furthermore, an assumption is made that the beam is both homogeneous and isotropic. In
addition, the beam has a slender cross-section, i.e. its thickness (in the plane of rotation) is far smaller than its
width or radius of curvature. As a result, the beam deforms only in the plane of rotation. The vibration of the
curved beam comprises an axial extension component and a bending deformation component. Neglecting the
effect of shear deformation, the normal strain can be expressed as [15,20]

� ¼
qu

qs
þ

v

R
� r

q2v
qs2
�

1

R

qu

qs

� �
þ

1

2

qv

qs

� �2

, (1)

where u and v are the axial and radial displacements of the beam centroid, respectively, s denotes the axial
coordinate, r is the distance from the centroidal axis, and R is the radius of curvature of the beam. Note that
the nonlinear term in Eq. (1) is required to explain the influence of centrifugal force on the bending stiffness.
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Fig. 1. Geometry and coordinate system of rotating curved beam with elastically restrained root.
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The strain energy within the beam is given by

U ¼
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where E is Young’s modulus and A is the cross-sectional area.
In Eq. (2), it is assumed that the rigidity of the beam in the radial direction is far lower than that in the axial

direction. Moreover, an assumption is made that the deformation of the beam is relatively small. Therefore,
applying the consistent linearization approach [21], the strain energy can be approximated as
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where I is the area moment of inertia and Np is the axial centrifugal force acting on the undeformed rotating
curved beam, and can be computed directly as

Np ¼ rARO2 ðy0 � yÞðR sin yþ rh cos yÞ þ Rð1� cosðy0 � yÞÞ½ �, (4)

where r is the mass density, y0 is the arc angle and y is the angular coordinate.
If the hub is assumed to have zero radius, i.e. rh ¼ 0, Eq. (4) reduces to the form given by Park and Kim [19].

From Eq. (3), it can be seen that the strain energy comprises three components, namely the axial extension and
bending deformation (shown in the first and second terms, respectively) and the rotation-induced axial
centrifugal force.

Taking the stored energy induced by the root stiffness into account, the total potential energy within the
beam system is given by

Us ¼ U þ 1
2
kvvð0; tÞ2 þ 1

2
kyfð0; tÞ

2, (5)

where kv and ky represent the translational and rotational spring constants of the blade root, respectively, and
f is the rotational angle of the curved beam. Meanwhile, the kinetic energy of the rotating curved beam can be
expressed as

T ¼
1

2

Z y0

0

rARðvp
!
� vp
!
Þdy, (6)

where~vp is the absolute velocity of any arbitrary point p on the beam. It can be shown that the velocity has the
form

~vp ¼
qu

qt
� Oðrh sin yþ Rð1� cos yÞ þ vÞ

� �
~ey þ

qv

qt
þ OðR sin yþ rh cos yþ uÞ

� �
~er, (7)
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where ~ey and ~er are the axial and radial unit vectors, respectively. Utilizing the Hamilton principle, the
variation of the total energy within the rotating curved beam can be expressed asZ

dðT �UsÞdt ¼ 0. (8)

Thus, the following governing equations can be obtained:

qQ

qs
�
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þ

q
qs
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þ rAO2v� 2rAO
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Q

R
þ

qN

qs
� rA

q2u
qt2
þ rAO2uþ 2rAO
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¼ �rAO2ðR sin yþ rh cos yÞ (10)

with boundary conditions of
at s ¼ 0:

u ¼ 0, (11a)

QþNp

qv

qs
� kvv ¼ 0, (11b)

M � kyf ¼ 0 (11c)

and
at s ¼ L:

N ¼ 0, (12a)

Q ¼ 0, (12b)

M ¼ 0. (12c)

Note that the beam length, L, is given by L ¼ Ry0. In Eqs. (12a)–(12c), N, Q and M represent the axial
normal force, the shear force and the bending moment, respectively, and are given by
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þ
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� �
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qs3
�
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qs2

� �
and M ¼ EI

q2v
qs2
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1
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� �
. (13)

It can be seen that Eqs. (9) and (10) both contain a static centrifugal force component. For a straight beam,
y0 ¼ 0, no static centrifugal force is induced along the radial direction. Furthermore, for a non-rotating curved
beam, the two governing equations have the same forms as those given by Henrych [22].

3. Free vibration of rotating curved beam and solution procedure

3.1. Rotating curved beam

The axial and radial displacements of the rotating curved beam comprise both dynamic and static
components, i.e. u ¼ ud+us and u ¼ vd+vs, respectively, where ud and us are the dynamic and static dis-
placements of the beam centroid in the axial direction, while vd and vs are the dynamic and static displacements
of the beam centroid in the radial direction. As a result, the rotating beam system can be divided into two
subsystems, namely a dynamic system and a static system. The governing differential equations of the dynamic
subsystem can be expressed as
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Qd
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The corresponding boundary conditions have the form
at s ¼ 0:

ud ¼ 0, (16a)

Qd þNp
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� kvvd ¼ 0, (16b)

Md � kyfd ¼ 0 (16c)

and
at s ¼ L
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where Md, Nd, Qd and fd are defined respectively as
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It is well known that at low rotational speeds, the Coriolis force has a negligible effect on the dynamic
response of a beam with a large slenderness ratio. In the current analysis, it is assumed that the curved beam
has a sufficiently large slenderness ratio that the Coriolis force can be ignored.

3.2. Dimensionless governing equations

Assuming that the rotating curved beam exhibits time-harmonic vibration with an angular frequency o, its
dynamic displacements in the radial and axial directions can be expressed as

vd ðs; tÞ ¼ ~V ðsÞ eiot and udðs; tÞ ¼ ~UðsÞ eiot. (18)

For analytical convenience, the following dimensionless parameters are introduced:
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; Ū ¼

~U

L
; a ¼

ffiffiffiffiffiffiffi
rA

EI

r
OL2; bv ¼

kvL3

EI
; by ¼

kyL

EI
,

m ¼
rh

L
; x ¼

s

L
; L ¼

ffiffiffiffiffiffiffi
rA

EI

r
oL2. (19)

The coupled differential equations given in Eqs. (14) and (15) can then be rewritten in the following non-
dimensional form:

V̄
ð4Þ
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� �
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0
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0
Þ
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ðV̄
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ðŪ
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Þ �
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ðL2 þ a2ÞŪ ¼ 0, (21)
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where the prime symbol indicates differentiation with respect to the dimensionless variable x. The
corresponding dimensionless boundary conditions are given by

at x ¼ 0:

Ū ¼ 0, (22a)

V̄
000
� y0Ū

00
� a2N̄pV̄

0
þ bvV̄ ¼ 0, (22b)

V̄
00
� y0Ū

0
� byðV̄

0
� y0ŪÞ ¼ 0, (22c)

at x ¼ 1:

Ū
0
þ y0V̄ ¼ 0, (23a)

V̄
000
� y0Ū

00
¼ 0, (23b)

V̄
00
� y0Ū

0
¼ 0, (23c)

where the dimensionless axial centrifugal force has the form

N̄p ¼
1

y20
½y0ð1� xÞðsinðy0xÞ þ my0 cosðy0xÞÞ þ ð1� cosðy0 � y0xÞÞ�. (24)
3.3. Displacement relations and decoupling of governing equations

Multiplying Eq. (20) by a factor ðy0 þ L2
z=y0Þ, multiplying the derivative of Eq. (21) by y0 and then

subtracting the former from the latter, the following displacement relation is obtained:

Ū
0
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1
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k7V̄ þ k8N̄

0

pV̄
0
þ ðk8N̄p � y0L2

zÞV̄
00
�

L2
z
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V̄
ð4Þ

� �
. (25a)

Substituting the derivative of Eq. (25a) back into Eq. (21) yields the following relation:

Ū ¼
1

k1
ðk2 þ k3N̄

00

pÞV̄
0
þ 2k3N̄

0

pV̄
00
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ð5Þ
h i

. (25b)

Finally, substituting Eqs. (25a) and (25b) back into Eq. (21) yields

Ū
00
¼
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k3k6
½ðk2 þ k3N̄

00
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zÞV̄

0
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ð5Þ
�. (25c)

Note that the coefficients ki in Eqs. (25a)–(25c) are listed in Appendix A. Substituting Eq. (25a) and the
derivative of Eq. (25c) back into Eq. (20), a sixth-order differential equation is obtained in terms of the
variable V̄ only, i.e.

V̄
ð6Þ
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0
þ a0V̄ ¼ 0, (26)

where
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N̄p. (27)
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Meanwhile, substituting the relations given in Eq. (25) into Eqs. (22) and (23), the boundary conditions in
terms of V̄ only are obtained as follows:

At x ¼ 0:

b16V̄
ð5Þ
þ b15V̄

ð4Þ
þ b14V̄

000
þ b13V̄

00
þ b12V̄

0
þ b11V̄ ¼ 0, (28a)

b26V̄
ð5Þ
þ b25V̄

ð4Þ
þ b24V̄

000
þ b23V̄

00
þ b22V̄

0
þ b21V̄ ¼ 0, (28b)

b36V̄
ð5Þ
þ b35V̄

ð4Þ
þ b34V̄

000
þ b33V̄

00
þ b32V̄

0
þ b31V̄ ¼ 0, (28c)

At x ¼ 0:

b46V̄
ð5Þ
þ b45V̄

ð4Þ
þ b44V̄

000
þ b43V̄

00
þ b42V̄

0
þ b41V̄ ¼ 0, (29a)

b56V̄
ð5Þ
þ b55V̄

ð4Þ
þ b54V̄

000
þ b53V̄

00
þ b52V̄

0
þ b51V̄ ¼ 0, (29b)

b66V̄
ð5Þ
þ b65V̄

ð4Þ
þ b64V̄

000
þ b63V̄

00
þ b62V̄

0
þ b61V̄ ¼ 0. (29c)

Note that the coefficients bij in Eqs. (28) and (29) are presented in Appendix B.
Collectively, Eqs. (26)–(29) provide a complete description of the dynamic response of the rotating curved

beam system in terms of the radial displacement only.

4. Fundamental solutions and frequency equation

The decoupled governing differential equation given in Eq. (26) is a sixth-order ordinary differential
equation with variable coefficients. In general, the exact fundamental solutions for equations of this form
cannot be easily obtained. However, if the coefficients of the differential equation can be expressed in the
following polynomial form:

a0 ¼
Xn0
i¼0

dix
i; a1 ¼

Xn1
i¼0

eix
i; a2 ¼

Xn2
i¼0

f ix
i; a3 ¼

Xn3
i¼0

gix
i; a4 ¼

Xn4
i¼0

hix
i, (30)

then the six linearly independent fundamental solutions, wi(x), i ¼ 1–6, of Eq. (26) which satisfy the following
normalization condition at the origin of the coordinate system

w1ð0Þ w2ð0Þ w3ð0Þ w4ð0Þ w5ð0Þ w6ð0Þ

w01ð0Þ w02ð0Þ w03ð0Þ w04ð0Þ w05ð0Þ w06ð0Þ

w001ð0Þ w002ð0Þ w003ð0Þ w004ð0Þ w005ð0Þ w006ð0Þ

w0001 ð0Þ w0002 ð0Þ w0003 ð0Þ w0004 ð0Þ w0005 ð0Þ w0006 ð0Þ

w
ð4Þ
1 ð0Þ w

ð4Þ
2 ð0Þ w

ð4Þ
3 ð0Þ w

ð4Þ
4 ð0Þ w

ð4Þ
5 ð0Þ w

ð4Þ
6 ð0Þ

w
ð5Þ
1 ð0Þ w

ð5Þ
2 ð0Þ w

ð5Þ
3 ð0Þ w

ð5Þ
4 ð0Þ w

ð5Þ
5 ð0Þ w

ð5Þ
6 ð0Þ

26666666666664

37777777777775

¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2666666666664

3777777777775
(31)
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can be obtained by extending the technique used by Lee and Kuo [14] and using the power series method
originally applied by Stafford and Giurgiutiu [23,24]. Otherwise, approximated solutions can be obtained
using the algorithm developed by Lee and Kuo [13].

The six linearly independent fundamental solutions are assumed to have the form

wiðxÞ ¼
X1
n¼0

ki;nx
n; i ¼ 1; 2; . . . ; 6, (32a)

where

for w1ðxÞ : k1;0 ¼ 1; k1;1 ¼ k1;2 ¼ k1;3 ¼ k1;4 ¼ k1;5 ¼ 0,

for w2ðxÞ : k2;1 ¼ 1; k2;0 ¼ k2;2 ¼ k2;3 ¼ k2;4 ¼ k2;5 ¼ 0,

for w3ðxÞ : k3;2 ¼ 1=2; k3;0 ¼ k3;1 ¼ k3;3 ¼ k3;4 ¼ k3;5 ¼ 0,

for w4ðxÞ : k4;3 ¼ 1=6; k4;0 ¼ k4;1 ¼ k4;2 ¼ k4;4 ¼ k4;5 ¼ 0,

for w5ðxÞ : k5;4 ¼ 1=24; k5;0 ¼ k5;1 ¼ k5;2 ¼ k5;3 ¼ k5;5 ¼ 0,

for w6ðxÞ : k6;5 ¼ 1=120; k6;0 ¼ k6;1 ¼ k6;2 ¼ k6;3 ¼ k6;4 ¼ 0. (32b)

Substituting Eqs. (30), (32) into Eq. (26) and collecting the coefficients of those terms with like powers of x,
the following recurrence formula can be obtained:

ki;mþ6 ¼
�1

ðmþ 6Þðmþ 5Þ � � � ðmþ 1Þ

Xm

j¼1

ðm� j þ 6Þ � � � ðm� j þ 1Þki;m�jþ6

" #(

þ
Xm

j¼0

ðm� j þ 4Þ � � � ðm� j þ 1Þhjki;m�iþ4

" #

þ
Xm

j¼0

ðm� j þ 3Þ � � � ðm� j þ 1Þgjki;m�jþ3

" #

þ
Xm

j¼0

ðm� j þ 2Þðm� j þ 1Þf jki;m�jþ2

" #

þ
Xm

j¼0

ðm� j þ 1Þejki;m�jþ1� þ ½
Xm

j¼0

djki;m�j

" #)
; m ¼ 0; 1; � � � ! 1. (33)

This formula enables the six exact normalized fundamental solutions given in Eq. (32) to be generated.
Thus, the general solution of the rotating beam system can be expressed as

V̄ ðxÞ ¼
X6
i¼1

ciwiðxÞ, (34)

where ci (i ¼ 1–6) are constants whose values are to be determined.
Substituting the general solution given in Eq. (34) into the associated boundary conditions given in Eqs.

(28a)–(29c) yields the following set of equations:

½Bij �fcig ¼ 0; i; j ¼ 1� 6, (35)

where

Bij ¼ bij ; i ¼ 1; 2; 3; Bij ¼
X6
k¼1

bikw
ðk�1Þ
j ð1Þ; i ¼ 4; 5; 6; j ¼ 1; 2; . . . ; 6. (36)
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As a result, the natural frequencies of the rotating curved beam with an elastically restrained root can be
derived from the following frequency equation:

jBijj ¼ 0. (37)

5. Rotating straight beam

For the case where the arc angle approaches a value of zero, the curved beam transforms into a straight
beam and the coefficients given in Eq. (27) for the sixth-order differential displacement equation given in
Eq. (26) become

a0 ¼ �
ðL2 þ a2Þ2

L2
z

; a1 ¼ �
a2

L2
z

ðL2 þ a2ÞN̄ 0p � a2N̄ 000p ,

a2 ¼ �ðL2 þ a2Þ �
a2

L2
z

ðL2 þ a2ÞN̄p � 3a2N̄ 00p ; a3 ¼ �3a2N̄
0

p

a4 ¼
ðL2 þ a2Þ

L2
z

� a2N̄p. (38)

Eq. (26), with the coefficients given in Eq. (38), can then be expressed as

D2 þ
L2 þ a2

L2
z

� �
ðD4 � a2N̄pD2 � a2N̄ 0pD� L2 � a2ÞV̄ ¼ 0, (39)

where D is the differentiation operator with respect to the dimensionless variable x. For a straight beam,
Eq. (39) reduces to the following form:

ðD4 � a2N̄pD2 � a2N̄ 0pD� L2 � a2ÞV̄ ¼ 0 (40)

which is consistent with that given by Lee and Kuo [13]. Applying the procedure presented in Appendix C, it
can be shown that the boundary conditions for the limiting case of a straight rotating beam have the form

at x ¼ 0:

V̄
000
� a2N̄pV̄

0
þ bvV̄ ¼ 0, (41a)

V̄
00
� byV̄

0
¼ 0, (41b)

at x ¼ 1:

V̄
000
¼ 0, (42a)

V̄
00
¼ 0. (42b)

Alternatively, the limiting boundary conditions (Eqs. (41) and (42)) can be obtained simply by setting y0 ¼ 0
in the boundary conditions given in Eqs. (22) and (23).

6. Verification and discussion

To demonstrate the accuracy and efficiency of the proposed solution procedure, two examples are presented
for illustration purposes. The first example considers the limiting case of a straight beam in which the radius of
curvature R-N and the arc angle y0-0. Table 1 summarizes the results obtained for the natural frequencies
(L) of the straight rotating beam at various values of the hub radius (m) by the current method and by the
methods presented by Yoo and Shin [25] and Putter and Mandor [26], respectively. It is evident that a good
agreement is obtained between the three sets of results. Fig. 2 compares the results obtained using the
proposed method for the fundamental natural frequencies of two curved cantilever beams with arc angles of
y0 ¼ 501 and 901, respectively, with those computed using the finite element method presented in Ref. [19]
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Fig. 2. Comparison of results obtained for fundamental natural frequencies of curved cantilever beams with arc angles of y0 ¼ 501 and

901, respectively (m ¼ 0 and Lz ¼ 100
ffiffiffi
3
p

y0; solid line: present; symbol ‘*’ and ‘+’ [19]).

Table 1

Comparison of results obtained for natural frequencies in chordwise bending vibration of straight cantilever beam

m a Mode Present [25] [26]

0 2 1 3.62 3.62 3.61

2 22.5 22.5 22.5

10 1 5.05 5.05 5.05

2 32.1 32.1 32.1

1 2 1 4.40 4.40 4.40

2 23.3 23.3 23.3

10 1 13.3 13.3 13.3

2 43.2 43.2 43.2

5 2 1 6.65 6.65 6.65

2 26.1 26.1 26.1

10 1 27.7 27.7 27.7

2 71.4 71.4 71.4
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under equivalent conditions. Again, it is evident that a good agreement exists between the two sets of results in
both cases.

Table 2 illustrates the influence of the rotational speed a and arc angle y0 on the first four natural
frequencies of a curved cantilever beam with a slenderness ratio Lz ¼ 100 mounted in a hub with a radius of
m ¼ 0. It can be seen that in the first vibrational mode, the fundamental natural frequency increases with an
increasing rotational speed at an arc angle of y0 ¼ 101, increases and then decreases with an increasing
rotational speed at an arc angle of y0 ¼ 501, and decreases continuously with an increasing rotational speed at
an arc angle of y0 ¼ 901. Furthermore, comparing the results presented in Table 2 for the fundamental natural
frequencies of the first vibrational mode with the corresponding results presented in Table 1, it can be seen that
when the arc angle has a low value (i.e. y0 ¼ 101), the dynamic behavior of the curved beam is very similar to
that of a straight beam since the resulting centrifugal force increases the rigidity of the beam. However, as the
arc angle is increased, it is observed that the behavior of the rotating curved beam diverges markedly from that
of the straight beam; particularly at higher values of the rotational speed. This result is to be expected since
higher values of the arc angle y0 and rotational speed a lead to a greater centrifugal force, which in turn
prompts a greater deformation of the beam in the first vibrational mode. In other words, the coupled effect of
y0 and a reduces the bending rigidity of the beam in the first mode. The rightmost column of Table 2(a) shows
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Table 2b

Influence of rotational speed a and arc angle y0 on third and fourth natural frequencies of curved cantilever beam [Lz ¼ 100, m ¼ 0]

a y0 ¼ 101 y0 ¼ 501 y0 ¼ 901

L3 L4 L3 L4 L3 L4

0 61.6015 120.7387 59.5946 117.9619 56.0887 114.1167

1 61.7376 120.8828 59.7223 118.0964 56.2013 114.2390

2 62.1437 121.3140 60.1035 118.4985 56.5377 114.6047

3 62.8142 122.0288 60.7328 119.1647 57.0931 115.2110

4 63.7395 123.0212 61.6013 120.0892 57.8600 116.0528

5 64.9075 124.2835 62.6974 121.2638 58.8283 117.1235

6 66.3037 125.8060 64.0076 122.6787 59.9863 118.4148

7 67.9121 127.5773 65.5167 124.3222 61.3207 119.9173

8 69.7161 129.5849 67.2088 126.1812 62.8177 121.6200

9 71.6987 131.8153 69.0678 128.2413 64.4632 123.5116

10 73.8434 134.2537 71.0778 130.4868 66.2429 125.5799

Table 3a

Influence of rotational speed a and arc angle y0 on first two natural frequencies of curved cantilever beam [Lz ¼ 100, m ¼ 1]

a y0 ¼ 101 y0 ¼ 501 y0 ¼ 901

L1 L2 L1 L2 L1 L2

0 3.5182 21.9561 3.5707 20.3331 3.6965 17.7977

1 3.7576 22.2725 3.7544 20.6100 3.7889 17.9996

2 4.3939 23.1949 4.2549 21.4179 4.0517 18.5899

3 5.2764 24.6530 4.9705 22.6962 4.4495 19.5273

4 6.2933 26.5546 5.8150 24.3652 4.9436 20.7562

5 7.3826 28.8071 6.7338 26.3437 5.5016 22.2181

6 8.5123 31.3293 7.6960 28.5601 6.1006 23.8601

7 9.6656 34.0564 8.6842 30.9565 6.7254 25.6380

8 10.8333 36.9386 9.6885 33.4879 7.3662 27.5169

9 12.0104 39.9385 10.7030 36.1205 8.0171 29.4701

10 13.1937 43.0289 11.7242 38.8291 8.6742 31.4775

Table 2a

Influence of rotational speed a and arc angle y0 on first two natural frequencies of curved cantilever beam [Lz ¼ 100, m ¼ 0]

a y0 ¼ 101 y0 ¼ 501 y0 ¼ 901

L1 L2 L1 L2 L1 L2

0.00 3.5182 21.9561 3.5707 20.3331 3.6965 17.7977

1.00 3.5445 22.0796 3.5777 20.4448 3.6704 17.8886

2.00 3.6205 22.4458 3.5966 20.7764 3.5900 18.1584

3.00 3.7381 23.0433 3.6230 21.3175 3.4478 18.5989

4.00 3.8871 23.8548 3.6501 22.0522 3.2304 19.1974

5.00 4.0570 24.8588 3.6711 22.9613 2.9141 19.9386

6.00 4.2392 26.0326 3.6795 24.0241 2.4530 20.8057

7.00 4.4274 27.3535 3.6697 25.2197 1.7249 21.7818

7.83 4.5847 28.5446 3.6444 26.2976 0 22.6623

8.00 4.6171 28.8001 3.6370 26.5286 – 22.8510

9.00 4.8054 30.3532 3.5771 27.9334 – 23.9989

10.0 4.9906 31.9963 3.4855 29.4186 – 25.2126
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Table 3b

Influence of rotational speed a and arc angle y0 on third and fourth natural frequencies of curved cantilever beam [Lz ¼ 100, m ¼ 1]

a y0 ¼ 101 y0 ¼ 501 y0 ¼ 901

L3 L4 L3 L4 L3 L4

0 61.6015 120.7387 59.5946 117.9619 56.0887 114.1167

1 61.9378 121.0936 59.8999 118.2837 56.3353 114.3895

2 62.9344 122.1509 60.8048 119.2418 57.0665 115.2024

3 64.5559 123.8889 62.2775 120.8149 58.2578 116.5387

4 66.7494 126.2730 64.2701 122.9690 59.8720 118.3722

5 69.4518 129.2586 66.7249 125.6594 61.8635 120.6687

6 72.5960 132.7934 69.5804 128.8327 64.1827 123.3880

7 76.1170 136.8190 72.7759 132.4289 66.7803 126.4857

8 79.9546 141.2694 76.2551 136.3815 69.6073 129.9159

9 84.0562 146.0577 79.9677 140.6171 72.6283 133.6319

10 88.3764 150.9984 83.8699 145.0520 75.7998 137.5879

Fig. 3. Influence of arc angle y0 and rotational speed a on fundamental natural frequencies of straight and curved cantilever beams at (a)

m ¼ 0 and (b) m ¼ 1 (bv, by-N; Lz ¼ 200; (—) y0 ¼ 0, ( � � � � ) y0 ¼ 501, and (– � –) y0 ¼ 901).

Fig. 4. Influence of arc angle y0 and rotational speed a on fundamental natural frequencies of straight and curved cantilever beams at (a)

m ¼ 0 and (b) m ¼ 1 (bv ¼ 1000, by-N; Lz ¼ 200; (—) y0 ¼ 0, ( � � � � ) y0 ¼ 501, and (– � –) y0 ¼ 901).
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that at a certain critical value of this coupled effect, the fundamental natural frequency reduces to zero,
i.e. a divergent instability (tension buckling) condition occurs [27]. However, at higher vibrational modes,
Tables 2(a) and (b) show that the coupled effect exerts less influence on the dynamic response of the beam.
From inspection, it is found that the corresponding natural frequencies increase with increasing rotational
speed, and decrease with increasing arc angle.

Table 3 illustrates the effect of the rotational speed and arc angle on the first four natural frequencies of a
curved cantilever beam with a slenderness ratio Lz ¼ 100 mounted in a hub with a radius of m ¼ 1. Comparing
Tables 2 and 3, it is evident that for a given value of the rotational speed, the natural frequencies associated
with the first four vibrational modes of the rotating beam increase as the hub radius is increased. Furthermore,
in direct contrast to the results presented in Table 2 for m ¼ 0, it is observed that the hub radius effect causes
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the first natural frequency to increase rather than decrease with increasing rotational speed at the highest arc
angle of y0 ¼ 901.

Figs. 3–5 illustrate the effect of the translational spring constant bv on the fundamental natural frequencies
L1 of straight and curved rotating beams. Note that rotational displacement at the root is not allowed, and
thus by-N in every case. The three figures correspond to translational spring constants of N, 1000, and 100,
respectively, and show that the spring constant has a significant effect on the fundamental natural frequencies
of the two beams. Fig. 3(a) shows that in the case where the hub radius is m ¼ 0, the fundamental natural
frequency of the curved cantilever beam with an arc angle of 901 decreases as the rotational speed is increased.
Furthermore, it can be seen that at a certain critical value of the rotational speed, a divergent instability
condition occurs, i.e. the fundamental natural frequency falls to zero. However, Fig. 3(b) shows that the hub
radius effect causes the fundamental natural frequency of the curved beam to increase with an increasing
Fig. 5. Influence of arc angle y0 and rotational speed a on fundamental natural frequencies of straight and curved cantilever beams at

(a) m ¼ 0, (b) m ¼ 0.5 and (c) m ¼ 1 (bv ¼ 100, by-N; Lz ¼ 200; (—) y0 ¼ 0, ( � � � � ) y0 ¼ 501, and (– � –) y0 ¼ 901).
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Fig. 6. Influence of arc angle y0 and rotational spring constant by on fundamental natural frequencies of straight and curved cantilever

beams at (a) m ¼ 0 and (b) m ¼ 1 (by-N; Lz ¼ 200).
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rotational speed at all values of the arc angle, including y0 ¼ 901. When the translational spring constant bv is
reduced from infinity to a value of 1000, Fig. 4 shows that the fundamental natural frequencies decrease
significantly at both values of the hub radius. Furthermore, it can be seen that as in Fig. 3(b), divergent
instability does not occur when the hub radius is increased to m ¼ 1. However, when the translational spring
constant is reduced further to 100, it is seen that divergent instability occurs at all values of the arc angle and
hub radius. Overall, the results presented in Figs. 3–5 reveal that the natural frequencies of the straight and
curved beams decrease significantly with a decreasing translational spring constant bv, with the result that at a
certain critical value of bv, divergent instability occurs irrespective of the hub radius value.

Fig. 6 illustrates the influence of the rotational spring constant by on the fundamental natural frequencies L1 of
straight and curved rotating beams for the case where translation displacement at the root is not allowed, i.e. b-
N. It is observed that at all values of the arc angle and rotational speed, the natural frequency increases slightly
with an increasing rotational spring constant, by. Furthermore, comparing the results presented in Fig. 6 with
those presented in Figs. 3–5, it is apparent that the degree of influence of the rotational spring constant by on the
natural frequency of the two beams is far lower than that of the translational spring constant bv.

7. Conclusion

Utilizing Hamilton’s principle and a consistent linearization approach, this study has established the
governing differential equations and boundary conditions for the free vibration of a rotating curved beam
with an elastically restrained root. Explicit relations have been derived to correlate the displacements of the
beam in the axial and radial directions, respectively, and a closed-form solution of the general system has been
obtained. The respective effects of the arc angle, the root spring constants, the rotational speed, and the hub
radius on the natural frequencies and divergent instability characteristics of a curved rotating beam have been
systematically examined and compared with those observed for a straight beam. The major findings of the
present study can be summarized as follows:
(1)
 Given a sufficiently small value of the arc angle, the fundamental natural frequencies of a curved cantilever
beam increase with an increasing rotational speed. However, at higher values of the arc angle and smaller
values of the hub radius, the coupled effect of the arc angle and the rotational speed reduces the bending
rigidity of the beam in the first vibrational mode. At a certain critical value of the coupled effect, the
fundamental natural frequency reduces to zero, indicating the onset of a divergent instability condition.
(2)
 The natural frequencies of the curved beam increase with an increasing value of the hub radius.

(3)
 The natural frequencies of the curved beam also increase as the values of the translational and rotational

spring constants are increased. Of the two spring constants, the translational spring constant has a
significantly greater effect on the natural frequency of the beam.
(4)
 Given a sufficiently low value of the translational spring constant, a divergent instability effect is induced
in the rotating curved beam even at large values of the hub radius.
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Appendix A

The coefficients of the displacement relations given in Eq. (25) are as follows:

k1 ¼
ðL2 þ a2Þ2

y0
þ

L4
zðL

2 þ a2Þ
y0

þ y0L2
zðL

2 þ a2Þ,

k2 ¼ � 3L2
z þ

L4
z

y20
þ y20

 !
ðL2 þ a2Þ þ y20L

2
zðy

2
0 þ L2

zÞ,
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k3 ¼ �a2 y20 þ 2L2
z þ

L4
z

y20

 !
; k4 ¼ ð2y

2
0L

2
z þ 2L4

z þ L2 þ a2Þ,

k5 ¼ L2
z þ

L4
z

y20

 !
; k6 ¼ y20L

2
z þ L4

z þ L2 þ a2,

k7 ¼ ðL2 þ a2Þ y0 þ
L2

z

y0

� �
� y0L2

zðy
2
0 þ L2

zÞ; k8 ¼ a2 y0 þ
L2

z

y0

� �
.

Appendix B

The coefficients of the boundary conditions given in Eqs. (28) and (29) are as follows:
b11 ¼ 0;
 b12 ¼ k2 þ k3N̄
00

pð0Þ;
b13 ¼ 2k3N̄
0

pð0Þ; fc
 b14 ¼ k3N̄pð0Þ þ k4;
b15 ¼ 0;
 b16 ¼ k5;
b21 ¼ bv;

b22 ¼ �a2N̄pð0Þ �

k2k8y0
k3k6

�
k8y0
k6

N̄
00

pð0Þ �
k8y0L2

z

k3
;

b23 ¼ �
2k8y0

k6
N̄
0

pð0Þ;
 b24 ¼ 1þ
k8y0
k3
�

k8y0
k6

N̄pð0Þ �
k4k8y0
k3k6

;

b25 ¼ 0;

b26 ¼ �

k5k8y0
k3k6

;

b31 ¼ �
k7y0
k6

;
 b32 ¼ �by �
k8y0
k6

N̄
0

pð0Þ þ
k2y0by

k1
þ

k3y0by
k1

N̄
00

pð0Þ;
b33 ¼ 1�
k8y0
k6

N̄pð0Þ þ
2k3y0by

k1
N̄
0

pð0Þ þ
y20L

2
z

k6
;
 b34 ¼

k3y0by
k1

N̄pð0Þ þ
k4y0by

k1
;

b35 ¼
L2

z

k6
;
 b36 ¼

k5y0by
k1

;

b41 ¼ y0 þ
k7

k6
;
 b42 ¼

k8

k6
N̄
0

pð1Þ;
b43 ¼ �
y0L2

z

k6
;

b44 ¼ 0;
b45 ¼ �
L2

z

k6y0
;

b46 ¼ 0;
b51 ¼ 0;

b52 ¼ �

k2k8y0
k3k6

�
k8y0
k6

N̄
00

pð1Þ �
k8y0L2

z

k3
;

b53 ¼ �
2k8y0

k6
N̄
0

pð1Þ;
 b54 ¼ 1þ
k8y0
k3
�

k4k8y0
k3k6

;

b55 ¼ 0;

b56 ¼ �

k5k8y0
k3k6

;

b61 ¼ �
k7y0
k6

;
 b62 ¼ �
k8y0
k6

N̄
0

pð1Þ;
b63 ¼ 1þ
y20L

2
z

k6
;

b64 ¼ 0;
b65 ¼
L2

z

k6
;

b66 ¼ 0:
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Appendix C
The process of reducing the boundary conditions given in Eqs. (28) and (29) for a curved beam to those
given in Eqs. (41) and (42) for a straight beam can be summarized as follows:

Write the relations given in Eq. (25) in the form

y0Ū ¼
L4

z

ðL2 þ a2Þ2 þ ðL2 þ a2 þ L4
zÞ

q
qx
½V̄
ð4Þ
� a2ðN̄pV̄

0
Þ
0
� ðL2 þ a2ÞV̄ �,

y0Ū
0
¼ �

L2
z

ðL2 þ a2 þ L4
zÞ
½V̄
ð4Þ
� a2ðN̄pV̄

0
Þ
0
� ðL2 þ a2ÞV̄ �,

y0Ū
00
¼

L2
z

ðL2 þ a2 þ L4
zÞ

q
qx
½V̄
ð4Þ
� a2ðN̄pV̄

0
Þ
0
� ðL2 þ a2ÞV̄ �. (C.1)

Specifying y0 ¼ 0 in the above relations yields

q
qx
½V̄
ð4Þ
� a2ðN̄pV̄

0
Þ
0
� ðL2 þ a2ÞV̄ � ¼ 0; V̄

ð4Þ
� a2ðN̄pV̄

0
Þ
0
� ðL2 þ a2ÞV̄ ¼ 0,

q
qx
½V̄
ð4Þ
� a2ðN̄pV̄

0
Þ
0
� ðL2 þ a2ÞV̄ � ¼ 0. (C.2)

Substituting the relations given in Eq. (C.2) into the boundary conditions given in Eqs. (28) and (29) yields
the limiting boundary conditions given in Eqs. (41) and (42).
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